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Stochastic analyses are conducted of model neural networks of the generalized 
Little-Hopfield Hemmen type, in which the synaptic connections with linearly 
embedded p sets of patterns are free of symmetric ones, and a Glauber dynamics 
of a Markovian type is assumed. Two kinds of approaches are taken to study 
the stochastic dynamical behavior of the network system. First, by developing 
the method of the nonlinear master equation in the thermodynamic limit 
N--* oe, an exact self-consistent equation is derived for the time evolultion of the 
pattern overlaps which play the role of the order parameters of the system. The 
self-consistent equation is shown to describe almost completely the macroscopic 
dynamical behavior of the network system. Second, conducting the system-size 
expansion of the master equation for the N-body probability distribution of the 
Glauber dynamics makes it possible to analyze the fluctuations. In the course of 
the analysis, the self-consistent equation for the pattern overlaps is derived 
again. The main result of the rigorous fluctuation analysis is that as far as the 
fluctuations are concerned, the time course of the pattern overlap fluctuations 
behaves independently of the fluctuations in the remaining modes of the 
system's macrovariables, in accordance with the self-determining property of the 
macroscopic motion of the pattern overlaps for neural networks with linear 
synaptic couplings. 

KEY WORDS: Stochastic neural networks; asymmetric connection; Glauber 
dynamics; pattern overlaps; nonlinear master equation; fluctuations; system-size 
expansion; nonequilibrium phase transitions. 

1, W N T R O D U C T I O N  

T h e  s tudy  of  n e u r a l  n e t w o r k s  has  been  rece iv ing  m u c h  in te res t  f r o m  

physic is ts  in the  field o f  s ta t i s t ica l  mechan ics .  (1-6) Assembl i e s  of  i n t e r ac t i ng  

n e u r o n s  wh ich  a s s u m e  the  two  s ta tes  f i r ing a n d  res t ing  are  wel l  r e p r e s e n t e d  
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by spin systems with exchange interactions, and the process of associative 
memory retrieval is described by relaxational spin dynamics toward certain 
fixed points corresponding to the embedded patterns in the configuration 
space/2'7) From such a statistical mechanical point of view, the Hopfield 
model of neural networks which deals with the case of symmetric 
connections has been extensively investigated and the theory of equilibrium 
statistical mechanics of spin-glass-like systems has been successfully 
applied/s) This means that a static analysis suffices to explore the network 
properties in the case of symmetric connections. By contrast, when one 
deals with neural networks with asymmetric connections, (8-23) which are 
ubiquitous in real neurons of living systems, (24) it becomes quite important 
to consider the dynamics itself rather than the statics of the networks, due 
to the fact that the system then is of a dynamic nature. ~ 

We are interested in the dynamical behavior of Hopfield-type neural 
networks with asymmetric synaptic connections. To explore the dynamical 
properties of the networks, it is necessary to first formulate the dynamics 
governing the time evolution of the system. There are, in general, a 
variety of ways of formulating dynamics, such as synchronous (x'2s) or 
asynchronous, (2"26'27) deterministic (1'2) or stochastic, ~ Markovian (1'27) 
or non-Markovian, (14'17 19) etc. We take up the Glauber dynamics of 
Markovian type, which is considered to have the advantage that it not only 
provides us with a simple description of stochastic dynamics, but also 
enables us to deal with nonequilibrium phase transitions,/29-3~) as is 
discussed below. 

Glauber dynamics (32) was originally devised and developed for the 
study of the dynamics of ferromagnetic spin systems and it is well known 
that its mean-field version is capable of describing the qualitative nature of 
the dynamical behavior of ferromagnetic phase transitions in an intuitive as 
well as rigorous way. (33) As will be shown later, the extension of the 
Glauber dynamics to such a neural network system as endowed with asym- 
metric interactions is formal and quite easily done under the condition that 
the parameter representing the magnitude of external noise corresponds to 
temperature. The outcome of the extension is the capability of describing 
nonequilibrium phase transitions. Glauber dynamics with asymmetric 
interactions in general no longer ensures that the resulting dynamical 
equation for the order parameters yields a fixed-point-type attractor. In a 
previous paper, ~21) I reported that asymmetric synaptic connections, if 
appropriately chosen, give rise to limit-cycle-type oscillations in the order 
parameters, ensuring associative memory retrieval of temporal pattern 
sequences. I found that as the magnitude of noise is varied, a variety of 
types of bifurcation in general can occur, including Hopf bifurcation. 
Since the occurrence of Hopf bifurcation in an infinite-particle system 
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is considered to provide the concept of nonequilibrium phase 
transitions, (21'341 it follows that using Glauber dynamics, we can systemati- 
cally discuss the behavior of the nonequilibrium phase transitions, which 
can be viewed as a natural extension of the concept of thermodynamic 
phase transitions. In short, Glauber dynamics with asymmetric connections 
provides interesting problems which bear upon two important points: 
associative memory retrieval of temporal pattern sequences and non- 
equilibrium phase transitions. 

The aim of the present paper is to get insights into the dynamical 
structure of the Glauber dynamics capable of exhibiting nonequilibrium 
phase transitions, for the purpose of exploring the dynamical behavior of 
the stochastic neural network model. Noting that in a system of infinitely 
many degrees of freedom such as in a thermodynamic one, its dynamical 
properties are almost sufficiently described by only a few macrovariables in 
the form of the macroscopic motions and their fluctuations, (35-43) we are 
concerned with applying this idea to our neural network system. 

In the analysis of the static properties of neural networks with sym- 
metric connections, the macrovariables of physical relevance are known to 
be the so-called pattern overlaps. (4) To deal with the macroscopic motion 
of the pattern overlaps of asymmetric neural networks, we develop the 
method of the nonlinear master equation. (31'34'42~5) It will be noted that a 
master equation describing Markovian dynamics of a system composed of 
a finite number of particles is usually a linear equation and accordingly, in 
general, has nothing to do with bifurcation phenomena, owing to the fact 
that the usual type of H-theorem ensures the approach to a unique 
equilibrium state of a system. (46ms) The nonlinear master equation studied 
in the present paper is deduced from the underlyinig linear master equation 
for the Glauber dynamics by taking the thermodynamic limit N--, oe with 
the use of the mean-field character of the synaptic couplings between the 
neurons. Thereby, the nonlinear master equation in general is no longer 
expected to exhibit ergodic behavior and it becomes capable of displaying 
bifurcation phenomena. (2~'34'4zm4) From the nonlinear master equation, 
we can quite easily derive a self-consistent equation describing the time 
evolution of the pattern overlaps of the neural networks with asymmetric 
couplings which are linear in the embedded patterns. In this process, it is 
shown that the number of macrovariables necessary to describe the macro- 
scopic behavior of the system is considerably reduced from 2 p to p and a 
self-determining property of the macroscopic motion of the pattern over- 
laps follows. It also follows that the p macrovariables, i.e., the pattern over- 
laps, are entitled to be the order parameters of the system even in the 
dynamical sense. 

Then the problems arise of analyzing the order parameter fluctuations 
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and of discussing the critical fluctuations accompanied by the occurrence of 
nonequilibrium phase transitions involving, as a typical case, Hopf bifurca- 
tion. While the behavior of the order parameter fluctuations in systems 
undergoing thermodynamic phase transitions have been extensively 
studied, (49'5~ there has been relatively little activity in the study of their 
counterparts in systems exhibiting nonequilibrium phase transitions (29-3j~ 
except for the investigations of model chemical reaction systems (51) and of 
laser systems. (41'52) 

So we are concerned in the present paper with the construction of a 
foundation for fluctuation analysis in neural network systems, based on 
which particular problems of fluctuation behavior such as critical fluctua- 
tions will be readily studied. In our problem of analyzing fluctuations 
associated with the pattern retrieval dynamics, it is of particular concern to 
investigate the extent to which the fluctuations in the pattern overlaps 
behave independently of the fluctuations in the remaining modes of the 
system's macrovariables. 

In our fluctuation analysis, we employ the method of system-size 
expansion to extract the dynamics of the fluctuations in the form of the 
Fokker-Planck equation, which is obtained in the central limit scaling. The 
formalism of our system-size expansion, however, differs a little from the 
usual one in that the starting master equation assumes an explicit form of 
N-body equation written for the N-neuron system, although our system- 
size expansion follows substantially the spirit of what was devised 
originally by van Kampen (35) and, in fact, an alternative formulation using 
the usual recipe of the expansion is also available to obtain the same result. 
Coolen and Ruijgrok (2~ used a similar method to ours of the expansion to 
obtain, in lowest order of the expansion, the time evolultion equation for 
the macroscopic pattern overlaps of the present model. However, an 
attempt to try to describe the fluctuations by simply extending their expan- 
sion up to higher orders turns out to fail, because of insufficiency in the 
number of macrovariables used to specify the state of the system. This 
situation is closely related to the point of our primary concern of how the 
pattern overlap fluctuations behave. Our system-size expansion of the 
master equation is based on the choice of a sufficient set of macrovariables, 
i.e., sublattice magnetizations, for the system-size expansion to make sense. 

The present paper is organized as follows. In Section 2 we begin with 
the description of model neural networks of the generalized Little- 
Hopfield-Hemmen type to formulate the Glauber dynamics. We present 
the master equation describing the time evolution of the N-body proba- 
bility distribution for states of N neurons. Introducing the concept of 
sublattice and empirical probability, we develop the method of the 
nonlinear master equation in the thermodynamic limit N--, oe to derive a 
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self-consistent equation for the time evolution of the pattern overlaps. A 
brief report of our results was previously published elsewhere. In Section 3 
we lay the foundations for the fluctuation analysis of the pattern overlaps 
to be studied in the next section. On the basis of the N-body master 
equation, a system-size expansion of the reduced probability distribution 
for the variables of sublattice magnetizations is develop to derive the 
Fokker Planck equation for the fluctuations. Section 4 is devoted to the 
description of the main results of the fluctuation analysis of the present 
neural network system. By integrating out modes other than the pattern 
overlap fluctuations in the Fokker-Planck equation obtained in Section 3, 
we derive the time evolution equation for the pattern overlap fluctuations 
in a closed form for the fluctuations. In Section 5 we present a brief sum- 
mary. 

2. GLAUBER D Y N A M I C S  IN THE NEURAL NETWORKS AND 
NONLINEAR MASTER EQUATION APPROACH 

2.1. Model Neural Networks and Glauber Dynamics 

The generalized Little-Hopfield-Hemmen model of neural net- 
works/1'='7) is a stochastic system of formal neurons (s3) described by Ising 
spins (S= _+1), which are coupled to each other by synaptic connections 
corresponding to exchange interactions Ju" The network has p sets of 
patterns which are embedded for the purpose of associative memory 
retrieval through the synaptic connections with the Hebb learning rule (54) 
taken into account. 

Let {~I ~} (v = 1 ..... p) denote the vth pattern representing the vth par- 
ticular state of neurons {~v), "a (v),-", ~ ) } ,  with ~!v), taking either + 1 or - 1. 
There is no need to impose restrictions on the choice of {~}")}, that is, the 
embedded patterns are free of the degree of randomness or correlations. 
The p sets of patterns are incorporated into defining synaptic couplings J,j 
from neuron j to i with synaptic modifications of the Hebb type. We take 
the J0 to be (2~ 

1 P 

# , v =  l 

where N refers to the total number of neurons and (auv) is a p x p matrix 
representing the connection strength. We omit the usual restriction of sym- 
metry of (avv) to include asymmetric connections. 

For the dynamics which governs the time evolution of the above 
system, we consider a Markov process described by the Glauber dynamics 
with one-spin flip. We assume the transition rate to be determined by the 
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effective local field representing the weighted sum of the transmitted signals 
a neuron receives. Given a state of neurons {S} = ($1, $2 ..... SN), the effec- 
tive local field hi to which the ith neuron Si is subjected is defined by 

hi{S} = Z JoSJ (2.2) 
J 

Substituting Eq. (2.1), the hi is rewritten as 

hi{S} Z ~!U)a 1 
# , v  J # , v  

(2.3) 

where we define the overlap G (~) of the instantaneous state of neurons with 
the embedded patterns {~I ~/} (v = 1 ..... p) 

1 
G(V)= ~ E ~J#v)~~J (2.4) 

J 

in which G(V)= 1 implies complete memory retrieval with respect to the vth 
pattern, while G (v) = 0 represents no correlation with the embedded pattern. 
Defining the transition rate w(& ~ - S i )  to be 

w(Si ~ -S i )  = �89 - Si tanh/3h i { S} ) (2.5) 

the Glauber dynamics is described by the time evolution equation for the 
N-body probability distribution P(S~ ..... SN; t), 

3 
at P(S,  ..... sN; t) 

= -y~  w ( & +  - s i )  P(Sl,..., si,..., sN; t) 
i 

+ ~ w ( -  Si-~ Si) P(S1 ..... -- Si,...,Su; t) (2.6) 
i 

Here, /3 represents a measure of the inverse magnitude of the external 
noise affecting the neurons, and we may say that 1//3 plays the role of 
temperature in analogy to thermodynamic spin systems. We note that 
when (a,v) is symmetric, Eq. (2.6) ensures the existence of an equilibrium 
distribution of Gibbs type bearing a striking resemblance to 
thermodynamic equilibrium state. In the case of asymmetric (auv), one can- 
not expect, in general, to have such a thermodynamic potential and thus is 
led to deal directly with the dynamics based on Eq. (2.6). 
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2.2. Nonlinear Master Equation and Self-Consistent Equation 
for the Pattern Overlaps 

To proceed further with Eq. (2.6), we introduce the concept of sublat- 
tice (r'ss~ to take advantage of the present model with separability and 
mean-field character in the coupling scheme of Eq. (2.1). We divide the 
system of N neurons into at most 2 ~ sublattices according to the endow- 
ment of the p embedded patterns. 

Let H p denote the p-dimensional hypercube of + 1 coordinates (H p = 
{ + l, -1}P).  Defining, for each { E H  p, the sublattice s such that 

(2(~) = {site il ~I ~)= ~(P),/~ = 1 ..... p} (2.7) 

we partition the whole system (2 into 2 p disjoint sublattices 

O =  U ~(~) (2.8) 
{ ~ H  p 

Denoting by 1~3({)j the size of the set ~2({), i.e., the number of elements of 
(2(~), we define the rate of appearance R({) of the pattern component 
{ e HP: 

IQ(~)} 
R({)= N (2.9) 

We are interested in the behavior of our neural networks in the 
large-N limit. In the thermodynamic limit N ~ 0% one expects the ratio to 
the total number If2({)[ of the number of sites with spin up (Si= 1) in (2({) 
to tend to fi certain nonfluctuating quantity p(tl{): 

[{site i ~ s ] Si(t) = 1 }1 
Is~(~)l N~ ~' p(t(r (2.10) 

since the law of large numbers holds. The p(t[{) represents the empirical 
probability of finding + 1 spin at time t in sublattice s Since 

y 

the overlap G (") also converges,to a nonfluctuating quantity in the limit 
N ~  oo: 

G ( ~ ) ~  g(~)= ~ r ( { ) r  
~ E H  p 

= ~ r(~) ~(~)[-2p(t[~)- 1] (2.12) 
F~eHP 
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where we define limN~ ~ R({ )=r ({ ) .  Accordingly, it turns out that the 
effective local field h~ at each site in t2({) also assumes in this limit a 
nonfluctuating value h({): 

I t ,  V 

I t,  v 11 ~ H p 

r(~) rt(~)E2p(t [ q ) -  1] (2.13) 

Since the transition rates w(Si~ -Si) and w(-Si--,  Si) in Eq. (2,6) 
then involve only the single variable Si, the probability distribution 
P(S1 ..... SN, t) will get formally decoupled into N seemingly independent 
probability distributions, which, though, in reality remain coupled with 
each other only through the nonfiuctuating local field h(~) determined by 
themselves. In other words, the stochastic behavior of each spin Si will then 
be governed by a single-body master equation of identical form which 
is obtained from Eq. (2.6) by setting N =  1 and replacing hi{S} in the 
transition rate (2.5) by the nonfluctuating quantity h(~). When one notes 
that the whole system is partitioned into sublattices {O({)}, each of which 
consists of a macroscopic number [O(N)] of spins subjected to a common 
local field h(~) which is expressed in terms of p(t j ~)'s, it turns out that the 
macroscopic dynamical behavior of the system is described by the time 
evolution of the empirical probability p(tl{) defined in Eq. (2.10). 

In fact, we can write down the following self-consistent nonlinear 
master equation for the p(t[{)'s, which corresponds to the above- 
mentioned single-body master equation: (21) 

1 
d p(tl{) = - ~  [-1 - t a n h  flh({)] p(tl{) 

1 
+ ~ [1 + tanh fih(~)] [1 - p(t [ ~)3 

1 
= - p ( t  ] {) + ~ [1 + tanh flh({)] (2.14) 

with h({) determined self-consistently through Eq. (2.13). This equation, 
which is exact in the thermodynamic limit N--, oc, will be rederived in 
another way using the method of system-size expansion in the next section. 
Unlike the usual linear master equations, the above nonlinear master 
equation, which shares a common property of yielding broken ergodicity 
with nonlinear Fokker-Planck equations developed for the study of phase 
transitions in stochastic systems of coupled nonlinear oscillators, (34'42-44) 
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is capable of exhibiting bifurcation phenomena of its solutions which 
represent nonequilibrium phase transitions. 

The dynamical structure of the above nonlinear master equation will 
be made clearer when we extract the dynamics of the pattern overlaps. In 
other words, combining Eqs. (2.12) and (2.14), we can obtain another self- 
consistent equation describing the time evolution of the overlaps giVe(t) in 
a p-dimensional phase space. Differentiating Eq. (2.12) with respect to t 
and substituting Eq. (2.14), one obtains (2~ 

ddt g(~)= -g(~) + ~ r(~)~(~)tanh (fl ~ ~(")a~kg (k)) 
r E H p ,u ,k  

v = 1,..., p (2.15) 

Here we have made a considerable reduction in the number of macro- 
variables of the differential equations, from 2 p in Eq. (2.14) to p in 
Eq. (2.15). We may say that the macrovariables of pattern overlaps have 
a self-determining property. A self-consistent equation for the pattern 
overlaps analogous to Eq.(2.15) was obtained by Buhmann and 
Schulten (15) for a simpler model of neural networks capable of temporal 
memory retrieval. The existence of such a self-determining property of the 
pattern overlaps, which was first found by Choy and Sherrington (56) in the 
case of symmetric connections with p = 2, is attributed to the nature of the 
synaptic couplings, where J,j is linear in (1/~v~ x;,p ~(")a ~!~)(17) 

Comparing Eqs. (2.14) and (2.15), we may also say that the motion of 
the p(t[ {) in 2P-dimensional phase space is slaved by that of the pattern 
overlaps g(~l(t) in a p-dimensional phase space such that the dynamics of 
g(~), which is governed by the self-consistent equation (2.15), drives the 
time evolution of the p(t]r through the effective local field h(r It is 
further noted that the nonlinear equation (2.14) is linear in p(t[ {) except 
for the terms involving the hyperbolic tangent function, which plays the 
role of a driving force. Accordingly, it turns out that the macroscopic 
dynamical behavior of the neural network system including bifurcation 
phenomena is exhaustively described only by the dynamics of the pattern 
overlaps. The self-determining property of the macrovariables of the 
pattern overlaps together with their slaving property implies that they will 
be entitled to be the order parameters of the present neural network system 
at least in a macroscopic sense. 

On the basis of the equation for the pattern overlaps, we studied pre- 
viously the occurrence of nonequilibrium phase transitions in connection 
with associative memory retrieval of temporal pattern sequence. (21) Since 
setting p = 2 suffices to observe the effect of asymmetry on the dynamical 
behavior of the neural networks, we conducted a bifurcation analysis 
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of Eq. (2.15) with p = 2  and obtained the conditions of (a,v) for the 
occurrence of limit-cycle-type solutions. We found that neural networks 
with asymmetric connections are characterized by the occurrence of a rich 
variety of bifurcation phenomena, including Hopf bifurcation, in contrast 
to the case of symmetric connections. 

3. SYSTEM-SIZE EXPANSION AND SUBLATTICE 
MAGNETIZATION FLUCTUATIONS 

We now turn to the study o f  the fluctuations of macrovariables 
describing the macroscopic motion of the system. Since the pattern 
overlaps g(V) have turned out to be the order parameters of the system and 
hence their dynamical behavior plays a crucial role in determining the 
structure of nonlinear dynamics of the network system as well as in featur- 
ing the network properties of learning and associative memory retrieval, 
the study of the pattern overlap fluctuations is of considerable importance. 
In particular, considering the fact that the p variables of the pattern over- 
laps g(~/ constitute a sufficient set of relevant macrovariables with respect 
to the macroscopic behavior of the present system, which is in reality of 2 p- 
dimensional character, our primary concern is with the questions: Does the 
same thing also hold for the fluctuations? If not, to what extent do the 
pattern overlap fluctuations behave independently of the remaining degrees 
of freedom? In this and the following sections we are concerned with such 
problems. 

To analyze the behavior of fluctuations, it is necessary to extract the 
fluctuations from the microscopic dynamics governing the system. Van 
Kampen (35-37) devised a system-size expansion method to investigate the 
time course of fluctuations in macrovariables of physical relevance, within 
the framework of Markovian dynamics. The method has been developed 
and applied by many authors I3s'41'51"52'57) to investigate fluctuation 
phenomena in nonequilibrium systems such as chemical reaction ones. In 
this section we develop the system-size expansion method to deal with the 
behavior of the fluctuations in the neural network system, in which the 
N-body master equation (2.6) is explicitly formulated as governing its 
dynamical evolution, unlike the usual case where the system-size 
dependence appears only through a parameter characterizing the transition 
rates with the assumption of extensivity. ~ 38) 

Since the system-size expansion analysis involving only the pattern 
overlaps does not work in the present system, it is necessary to consider a 
sufficient set of macrovariables for the fluctuation analysis to be possible. 
We choose here a set of 2 p variables {M(~), ~ ~ HP}, which are linear func- 
tions of the empirical probabilities p(~) and are defined below. They will 
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be referred to, for convenience, as sublattice magnetizations, in analogy to 
magnetic spin systems. 

Let i t ( . )  ({ e H p) be the indicator function of the set f2({): 

l ~ ( j ) =  1 for j e f 2 ( { )  
(3.1) 

= 0  for j r  ~({)  

we define M({, {S}) as 

i v  ;J~l I0(~)1Zj~,~(g) Sj ~eHp (3.2) M(~, { S } ) =  = I ~ ( j ) S j -  N ]f2(~)[ ' 

On the basis of the master equation (2.6), we consider the time evolution 
of the reduced probability distribution for the variables M(~, {S}), which 
is defined as 

PM({M},t)=Z l-I 6(M({)-M({,{S}))P({S},t) (3.3) 
{S} {~HP 

In dealing with the master equation (2.6), we make an assumption, only for 
the sake of simplicity of description, that the self-excitation Jii is allowed in 
the contribution to the local field hi, so that the summation in (2.2) is 
taken over all the N neurons. This assumption will turn out not to affect 
the final results on the behavior of the fluctuations. 

From the master equation (2.6), we obtain the time derivative of the 
PM({M}, t): 

~t e M ( { M } ,  t) 

1 
= -~  2 g H,~(M(~)-M(~, {s})) 

{ s }  

x[1-Sitanh(fl~ {,")a~v~ ~(~}Zjl~j)SO]p({s},t) 

+~ ~'2~fi - {s'} 1 (M({)-IM({'{S'}) N)S'i]) 

uv ~ N 

( 2, ;"9 
{ s }  

--I-1 ~(M({)-- M({, {S}))} 

x[1-S~tanh(~{'~)a,,v~.~(~M({,{S}))]P({X},t) 
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= ~  Z ~ k.T N ~?M(q) [ I6 (M(~) -M(~ '  {S})) 
�9 { s }  k 1 

x [ 1 -  Si tanh (fl ~ ~i#')auv ~ ~(')M({, {S}) ) ]P(  {S}, t) (3.4) 

Here we used, in the first line of the above equation, 
variables {S} ~ {S'}: Sj = Sj ( j r  i), S; = -S~, noting that 

2 

2. lg(i)S; 
=M({, {S '} ) -  U 

the change of 

(3.5) 

and 

h i ( S  1 . . . .  S i . . .  S N )  = h i ( S t l  ' ' '  S ;  " "  SrN) 

= 2  ?(u)a'~i ,v ~V ~(v)g(~, {S'}) 
#v { 

(3.6) 

The third line is a result of the Taylor expansion of the part involving the 
variation of the 6 function, giving rise to the 1/N expansion of the master 
equation (2.6). We note that when the assumption of the self-excitation is 
removed, the term 

{1- Sitanh I fl ~ ~lUlau~ ~ ~(V)M({, { S} ) ]} 

in Eq. (3.4) should be replaced by 

, = o .  - U 

xtanh [ f l ~  ~(~)ai .~ z_.V ~(~)M(~, {S})] (3.7) 

We proceed to calculate expansion (3.4) up to k = 2 i.e., O(1/N). The 
k = 1 term L1 in Eq. (3.4) can be written, after first performing the summa- 
tion over i and noting S 2 = 1, as 
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0 

{s} 

N pv 
3 

x {M(n, {S}) If2(11)ltanh(fl2q(")a.v~e(V'M(g,{S}))}P({S),t)N .~ ~ 

(3.8) 

Further, changing the order of taking the summations over {S} and n, one 
obtains 

LI=~?M(q ) ~. ~[ 6(M(~)-M(~,  {S})) 
{s} 

x {M(n, {S}) 'f2(rl)[tanh[fl~rl{~'a~(~)M(~,{S})]} 
N _ *'~ 

• e ({s} ,  t) 

- ~ a  L u, ~. 
x PM({M}. t) (3.9) 

Here we assumed for simplicity that the dependence of [~(n)[/N on N can 
be discarded. This assumption will be reasonable when we confine our- 
selves to the situation in which the embedded patterns {~I "~} are of a kind 
of regular structure such that tga(n)l/N= r (n)+  O(1/N) in the limit of large 
iV. Since the residual of O(1/N) turns out not to contribute to the fluctua- 
tions studied below under the central limit scaling, we are then allowed to 
set I~(q)[/N= r(n) from the beginning. As a result of the above assump- 
tion, L~ becomes an N-independent term, which survives after the limit 
N-+ co is taken. 

The next leading term with N dependence of O(1/N), which we denote 
by L2, is the one with k = 2 in the expansion (3.4). We have from Eq. (3.4) 

1{ 4"lm(i) ln2(i) a 2 ~ } 
L =2 2a 2 - {s} n,,n~ aM(q,) aM(q2) a ( M ( { ) - M ( { ,  {S})) 

822/59/3-4-34 
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1 0 2 

= ~ ~N 2 OM(q)2I-[~(M(~)--M(~, {S})) 
{s} 

i Uv 

1 O 2 
-N~ ~ ~ 1-I 6(M({)-M({' {S})) 

{s} 

N[~/  tanh ~ ~(V)M({, {,})1} 

• e ({s} ,  t) 
1 O 2 
N~SM--(11)2{r(q)-M(q)tanh[fl~tl(U)a,~(V)M({)l} 
x P~({M},  t) (3.10) 

In the absence of the self-excitation, one has an additional term for L2 
which originates from the multiplication of k--1 and l=  1 terms in the 
respective expansions (3.4) and (3.7): 

tanh 

(3.11) 

The sum of L 1 and L2 constitutes the system-size expansion up to 
O(1/N) of the master equation, leading to the Fokker-Planck equation for 
the reduced probability density PM({M}, t): 

o o{  
o--tPM({M}, t ) = ~  OM(q) M(q)-r(q) 

x tanh [fl ~ tlw)a~v ~ r 

0M(n)2 r(q) - M(q) 

xtanh[fl ~ttU')auv z ~(V)M({)I}PM({M}, t ) (3.12) 

In the thermodynamic limit N--* oo, the second term on the rhs of 
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Eq. (3.12) vanishes and then Eq. (3.12) reduces to the one describing 
the macroscopic motion of the sublattice magnetizations 3~t(rl, t) 
[ =limN_ ~ M(~, {S(t)})] 

d [ ] 
dt 34(~1, t) = -M(rl ,  t) + r(rl) tanh fl ~ r/("~a.,, ~ r t) (3.i3) 

p , v  

When one notes the relation between the sublattice magnetizations (3.2) 
and the empirical probabilities (2.10) in the limit N ~  0% 

M(rl, t) = r(q) E2p(t ! 11) - 1 ] 

the nonlinear master equation (2.14) readily follows from Eq. (3.13). Since 
the pattern overlap g(V) in the limit N ~ ~ is given by 

g(V)(t) = ~ ~(V)M(~, t) (3.14) 

its time evolution is readily obtained as 

d Z d -~ g(~l(t) = -dt ~(~' t) 

= --g(V'(t) + Z r(~)~(~' tanh [fl Z ~(U)a~kg (k)(t)] 
Iz, k 

(3.15) 

which is consistent with the result of the analysis using the nonlinear 
master equation. 

We proceed to extract the fluctuation behavior from the Fokker- 
Planck equation (3.12). To this end, we use the well-known recipe of split- 
ting M(q) into its average m01, t) and fluctuations z(rl)/x/N for N 
large. ~35-38'43) Setting 

M(q) = m(rl, t) + ~ z ( n  ) 
(3.16) v 

PM({M}, t) d{M} = Q({z}, t) d{z} 

and noting 

N 2~-10PM_~Q x / N ~  ~Q _ _  
3t Ot 3z(q) 

O =x /~  O 
 M(n)  z(q) 

din(q, t) 
dt 

(3.17) 
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we obtain 

OQ dm(q, t) 
OQot ~ ~ ~ )  dt 

- r ( i l )  tanh [/7 ~v rl<"lav~ ~g ~(~) (m({, t )+ z({)'~]tx/~]j j Q({z}, t) 

{,<./- (mt., " 

xtanh [/7 ~rl(u)auv Y] ~(~) (m({, t)+z({)~]~ .~ g ~NJA) Q({z}. t) (3.18) 

With regard to O(x/-N ), we have 

~Q dm(q, t) s" 
Oz(~) dt 

When we choose m(il, t) such that m(il, t) is a solution to Eq. (3.13) of 
Jl4(11, t)'s, the above equation turns out to be automatically satisfied. 

Concerning the term of O(1), it follows that 

OQ({z},t) 
Ot 

~ ( z , . ) l r ( . )  ~ {~tanh[/7 ~q(.'a.~g(~)]tI~ ~{"z(~)l 
= llZ J)L g 

x Q({z}. t) 

" [  ( )] +~,~-77-Z~2 r(ll)-m(ll, t)tanh /7~#(V)a~ ~g(") Q({z},t) (3.20) 
#v 

with 

g(~l(t) = ~ ~(V)m(~, t) 

This equation is a linear Fokker-Planck equation with the drift terms 
linear in the variables z(~l) and describes the time course of the sublattice 
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magnetization fluctuations, which are scaled according to Eq. (3.16) in the 
limit N ~ oo. 

Even without the assumption of self-excitation on the local fields, we 
see that the same result follows, since the additional term in LE arising 
from the removal of the self-excitation turns out only to yield a term of 
O(1/.~/-N) instead of that of O(1 ), and accordingly it does not contribute to 
the fluctuations under the central limit scaling of Eq. (3.16). 

We also note that the remark about the neglect of the term of O(1/N) 
in L1, on the basis of the assumption of the N dependence of [~2(q)l/N is 
legitimate, since the residual of O(1/N) in If2(q)l/N is observed to give rise 
to a contribution of O(1/x/N) as well. 

4. 'TIME EVOLUTION OF THE PATTERN OVERLAP 
FLUCTUATIONS 

Our next problem is to investigate the fluctuations in the pattern over- 
laps G (v) on the basis of the linear Fokker-Planck equation (3.20). The 
fluctuations y(V) of the pattern overlaps are defined through 

y G(~) = g(V) + _ _  y(),  v = 1 ..... p (4.1) 

Since 

G (~) = 
~eHP 

y(V) can be written as 

Im(~ ' t ) + ~ N Z ( ~ ) ]  ((v) (4.2) 

y(V)= ~ ~(V>z(r (4.3) 
{~HP 

We attempt to obtain the time evolution of the probability distribution for 
the p variables {y(V)} from the linear Fokker-Planck equation for the 2 p 
variables {z(~)}. For this purpose, we perform the reduction of the macro- 
variables from {z} to {y} in (3.20). In other words, we define the reduced 
probability distribution for the pattern overlap fluctuations: 

v = l  

(4.4) 

Differentiation of Q with respect to t and substitution of Eq. (3.20) yields 
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8 otO({Y},t) 

=Zf d{z)[l a @~'-E ~(~)z(~)) 

L? ]} • z(n)-r(n)~j}'~(n) U~z(g) Q({z},t) 

n v { 

with 

(4.5) 

,uv 

(4.6) 

The first term on the rhs of Eq. (4.5) involving O/Sz(q) (denoted by @ ) can 
be rewritten, by using Eq. (4.3), as 

11 ~ 1 

x { z ( q ) - r ( q ) ~  J}l)(ll)y(t)} Q({z}, t) (4.7) 
l 

We make a change of variables from {z} to {y, yC} to perform the above 
integral: 

f ...d{z}= f ...J({y}, {y~})d{y} d{y} (4.8) 

with yC denoting a set of appropriately chosen 2 p - p variables and ~,r the 
Jacobian associated with the transformation. We note that using the trans- 
formed variables, we can rewrite Eq. (4.4) as 

Q({)~}, t)=fj({y}, {yC}) d{yC} d{y} l-I (37(v)- Y(~)) Q({Y}, {yC}, t) 
v 

=fd{y c} Q({37}, {yC}, t ) J ({ f i} ,  {yC}) (4.9) 
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Then we have 

( ~ ) = - z f J ( { Y } ,  {y'})d{y'}d{y} ~-~l~Ifi(jT(~)-y (~)) 
cl 

= ~.fd{y::d{Y} l-I 6(37( ~ } _ ..(~),, aOy {~) {[ Y(~) - ~ r/{~}r (~1)~ J~l}(R)Y{')I 
v q l 

x Q({y}, {y~}, t) ~({y},  {y~})} 

=E d { Y ~ } ~  .~(~)-2q(~)r(ll)2S}*)(q)- ~(~ Q({3~} , {y} , t )  
"q l 

• j ({y} ,  {yc}) 

Lv '("~ o({y}, ,~ ~4.1o) 

The second term on the rhs of Eq. (4.5) involving aZ/az(q) 2, which we 
denote by @, can also be integrated by almost the same procedure as in 
@. Employing integration by parts twice, we obtain 

~(~) " ~  # = ~ j J d t y ~ , d t y j  ,, ~y(~)j 
11 v 

x [j(2)(q) Q({y}, {y~}, t)] 

x J(2)(~l)Q({y}, {y},  t ) J ({y} ,  {S}) 

=2fd(y~} ,'~'~ J~'(n)o({~}.{/}.,)J({~}.{/}) 
q 

1" = Z r/(~)q(~')J(2)(11l) 8;(~)O~(,) Q({f}, t) (4.11) 

Summing up (~) and ~) and omitting the bar over y's, we finally obtain 
the time evolution equation of Q({y}, t): 
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0 t0 ({y} , t )  = 0  - - ~ - - ~ 5 0  f-YI~)+~[2r(ll)q(~'J}l)(ll)]Y(Z)tO({Y}'t)' ~n 

+ 2  2q(~)~(')J(Z)(n) Oy(~)@(,)O-({Y},t) (4.12) 
c~,7 t.- I I 

with J}~)(q) and J(Z)(rl) given by (4.6). 
This is a p-variable linear Fokker-Planck equation for the pattern 

overlap fluctuations {y(~)}. Although the coefficients of the second 
derivatives contain through J(2)(~l) not only the average pattern overlaps 
{ g(~)}, but also the average sublattice magnetizations {m(q, t)}, the above 
equation is observed to assume a closed form of the p variables of {y(~/}, 
as far as the fluctuations are concerned. In other words, the time evolution 
of the pattern overlap fluctuations behaves independently of the fluctua- 
tions in the remaining modes of the system's macrovariables. Consequently, 
when one wants to know the time evolution of the pattern overlap fluctua- 
tions {y(~)}, it suffices to get information on the macroscopic motion of the 
sublattice magnetizations {re(q, t)} as well as the initial conditions on 
the {y(~)}. One need not know more detailed information, such as on the 
z({). This situation will be a consequence of the fact that the reduced 
macrovariables of the pattern overlaps have the self-determining property 
mentioned in the previous section. 

Under the central limit scaling (3.16) or (4.1), the probability density 
~)({y}, t) takes a Gaussian form and thus is determined only by its first 
and second moments. On the basis of the linear Fokker-Planck equation 
(4.12), the time evolution equation for those moments can be easily 
obtained. Defining 

(y(~)), = f d{y) y(V)Q({y}, t) 

<y(~)y(V)> = f d{y} y(")y(V)O({y }, t) 

(4.13a) 

(4.13b) 

glm = Z r(q)  q(~ - aim 
q 

Og(m)(t) ~ q(~)a~v g(V)(t) 

Olm= Z tl(l)tl(rn)j(2)(11) 
q 

=~q(oq(m){r(q)-m(q,t)tanhI[l~(")a,~g(~l(t)] } (4.13d) 
q /~v 
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it is straightforward to obtain from Eq. (4.12) 

E dt (YtZ))'= ~ Kzm(y(ml)' (4.14a) 
m = l  

d ~ P 
dt (Y(1)y(m})~= Klm(y(m)),(n~)t+ ~ Km~(Y(OY(~)t+2Dtm 

n = l  n ~ l  

(4.14b) 

In the present context of the fluctuation analysis, Eq. (4.14a) turns out 
to be redundant, because one can set ( y ( l ) ) = 0  ( l= l,..., p) owing to 
the definition in Eq. (4.1). Equation (4.14b) can be rewritten in a matrix 
form as 

d 
dt oy = Kay + ayKV + 2D (4.15) 

with 

(6"y)# n = ( y ( l ) y ( m ~ ) l  

Although this type of equation is very familiar in the usual system-size 
expansion analysis of fluctuations (35-38/ such as for stochastic model 
systems of chemical reactions, the above equation for the pattern overlap 
fluctuations differs from its counterparts appearing in those systems in that 
the complete form of the self-determining property does not hold with 
respect to the fluctuations. In other words, as is shown in Eq. (4.13d), D 
cannot be determined solely by the p-dimensional macroscopic flow of the 
pattern overlaps { g(V)}, but requires the 2P-dimensional flow of {re(q, t)}. 

Note, however, that if the system is in a stationary state where the 
transient dies out, the order parameter fluctuations then exhibit a complete 
form of self-determining property, as is discussed below. 

Suppose one is concerned with a stationary state of equilibrium type 
corresponding to a fix-point-type attractor of the macroscopic dynamical 
equations (3.13) or (3.15). Owing to the slaving property of the pattern 
overlaps, the equilibrium values {m(q, t = oo)} turn out to be determined 
by the order parameters {g(V)} in the form 

m(q,t=oo)=r(q)tanh (# ~ q(~)a~vg(V~(t=oo)) (4.16) 
#l,V 

Then it follows that the pattern overlap fluctuations {y(V)} in the 
stationary state are governed only by the macroscopic motion of the pat- 
tern overlaps {g(~)} through Eq. (4.12) or (4.15). In other words, the order 
parameter fluctuations recover the self-determining property as in the case 
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of macroscopic dynamics. The above situation also applies to a stationary 
state exhibiting limit-cycle-type oscillatory behavior in the neural network 
system. In this case, the stationary time-periodic motion of {m(q, t)} also 
turns out to be solved uniquely in terms of stationary periodic functions of 
{ g(~)(t) }. Consequently, the knowledge of { g(~)(t) } completely determines 
the dynamical behavior of the pattern overlap fluctuations governed by 
Eq. (4.12) or (4.15). In short, we may say that the stationarity condition 
allows the pattern overlap fluctuations to recover the self-determining 
property and that the macrovariables of the pattern overlaps become 
worthy of being called order parameters in their true sense. 

Finally, from the viewpoint of the self-determining property of the 
pattern overlap fluctuations, we remark on the result of a dynamical 
analysis made by Buhmann and Schulten (15) for a different system of neural 
networks capable of temporal retrieval of pattern sequences. They con- 
sidered a system in which the bivariate variables representing states of 
neurons were assumed to take values either 1 or 0, unlike Ising spins of the 
present system, and further a kind of orthogonality condition was imposed 
among the embedded patterns. The specific assumptions are likely to have 
made their system remarkably simplified in such a way that the starting 
master equation describing the dynamics of the networks is written down 
only in terms of the pattern overlaps. Accordingly, in their theory there is 
no need to prepare deliberately variables other than the pattern overlaps, 
unlike in the present study, in conducting the fluctuation analysis. Then the 
pattern overlap fluctuations will have the complete form of the self-deter- 
mining property as obtained using a usual recipe of the system-size 
expansion analysis. If one removes the assumption of the orthogonality 
condition, such a simplification is no longer expected to follow, as was 
suggested in their paper, and the problems of the fluctuations then will 
have to be studied along the line of the present analysis. For this reason, 
our present approach will be of more general character and will have 
potential applicability in exploring fluctuation phenomena in general types 
of stochastic neural network systems, including their case. 

5. S U M M A R Y  

We have conducted stochastic analyses of the Glauber dynamics in 
generalized Little-Hopfield-Hemmen-type neural networks. By employing 
two kinds of approaches to the analyses of the starting master equation, we 
have elucidated the dynamical structure of the time evolution equations for 
both the macroscopic average and fluctuations of the pattern overlaps in 
the present neural network system. 

First we presented the method of the nonlinear master equation in 
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describing the macroscopic dynamical behavior of the system under the 
thermodynamic limit N ~  oe. The time evolution equation governing the 
macroscopic motion of the pattern overlaps has been quite easily and 
transparently obtained using the nonlinear master equation for the 
empirical probabilities. We have found that the macrovariables of the 
pattern overlaps play the role of the order parameters, and the non- 
linear dynamical behavior of the system including phenomena of the 
nonequilibrium phase transitions are exhaustively described by the macro- 
scopic dynamical equations of the patern overlaps. 

The method of the nonlinear master equation studied in the present 
paper will have wide applicability in the study of neural networks of similar 
structure to the present one, such as a system with a discrete-time version 
of the Glauber dynamics (58'59~ or a system described by bivariate variables 
taking values either t or 0. Details of such applications as well as of the 
dynamical analysis of the present system conducted from the viewpoint of 
nonequilibrium phase transitions will be published elsewhere, although a 
preliminary result was previously reported. (21~ 

Another main result of our stochastic approaches concerns the fluctua- 
tion analysis using the method of system-size expansion. Taking up, as a 
sufficient set of macrovariables to specify the state of the systems, the sub- 
lattice magnetizations, we have incorporated the extraction of the reduced 
probability distribution for the sublattice magnetizations into a power 
series expansion in system size N of the N-body master equation for the 
Glauber dynamics. From the expansion up to O(1/N) together with the 
central limit scaling of the fluctuations, the time evolution of the pattern 
overlap fluctuations has been extracted in a closed form for the 
fluctuations. It has been found that the pattern overlap fluctuations behave 
independently of the fluctuations in the remaining modes of the system's 
macrovariables, although they remain dependent on the macroscopic 
motions of the remaining modes (sublattice magnetizations). We have 
shown, however, that when the system is in a stationary state, the pattern 
overlap fluctuations recover the complete form of the self-determining 
property. 

On the basis of the time evolution equation for the fluctuations, one 
can investigate particular problems of fluctuation phenomena, such as the 
behavior of critical fluctuations associated with nonequilibrium phase 
transitions, which are exhibited in a variety of ways by the macroscopic 
dynamical equation of the pattern overlaps. Application to those problems 
will be studied elsewhere. 
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